Neues zu Reinigung und Desinfektion

Zürcher Hygiene Symposium

21. März 2023

Inhaltsverzeichnis

- 1. Vorstellung wer sind wir
- 2. Hygienerisiken und Verunreinigungen in Wasser, Luft, und auf Oberflächen
- 3. Reinigungstechniken und Desinfektion auf Oberflächen und Böden
- 5. Raumdesinfektion und Luftreinigung
- 6. Reinigungskontrollen und Hygienemonitoring
- 7. Neue technische Entwicklungen: Robotics, Sensorik, CAF, BIM & digitale Arbeitsteuerung
- 8. In eigener Sache Hygieneforum.ch
- 9. Erkenntnisse aus unseren Erfahrungen und Branchenvergleiche

1. Wer sind wir

- Enzler Gruppe: Schweizer Familienunternehmen im Bereich Hygiene & Reinigung
- Bestehend aus **4 Firmen**:

- Mission Statement: "Wir sind der Knowhow Leader als Hygieneanbieter."
- Eigene Kompetenzzentren Hygiene & Desinfektion, Wasserkreisläufe,
 Materialtechnologie

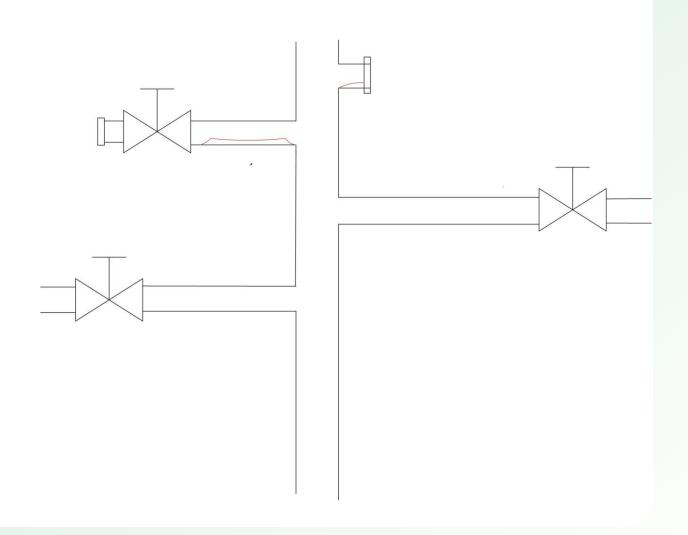
Dr. David Chaperon
Biochemiker, Desinfektion
& Bioanalytik
Leiter Kompetenzzentrum
Hygiene

Karl EnzlerDipl. Ing. ETH
VRP Enzler Gruppe

3. Hygienerisiken und Verunreinigungen in Wasser, Luft und auf Oberflächen

Wasser

- Trinkwasser, Reinwasser und WFI **Grundsätze**:
 - fliessend und kalt → kleines Risiko für Verkeimung
 - fliessend und heiss → kleines Risiko für Verkeimung
 - stehend und warm → sehr grosses Risiko für Verkeimung


Vorsicht

- Wärmepumpenboiler mit Betriebstemperaturen von 45° Celsius
 - Wirkungsgrad eines Wärmepumenboilers ist besser, je tiefer die Temperaturdifferenz zwischen Wärmereservoir und Boiler
 - Legionellen (Legionella pneumophila)
 - Heissintervall soll 65° C erreichen (Abtötungszeit Legionella 90% 2 Min.) und soll mehrere Stunden dauern
 - → Dekontamination ganzes Wassersystem
 - Trinkwasserverkeimung → Sanitisierung: zum Beispiel mit Ozon (O₃)

3. Hygienerisiken und Verunreinigungen in Wasser, Luft und auf Oberflächen

Vorsicht

- Totstellen in Wassersystemen
 - nicht benutzte Räume
 - nicht benutzte Zapfstellen,
 - verschraubte Auslasse
 - Umbauten
- Rückverkeimung aus der Totstelle in die Fliesszone

3. Hygienerisiken und Verunreinigungen in Wasser, Luft und auf Oberflächen

Lüftungen für Abluft und Zuluft

– Grundsatz:

- warm und trocken → kleines Risiko für Verkeimung
- kalt und trocken → kleines Risiko für Verkeimung
- kalt und feucht → Risiko für Verkeimung
- warm und feucht → grosses Risiko für Verkeimung

– Erfahrung:

- Die meisten Lüftungen für Zu- und Abluft zeigen bei richtiger Konstruktion und Wartung wenig Verkeimungen
- Vorsicht bei Küchenabluft → warm, feucht und fetthaltig
- Hat die Lüftung keine Klappe gegen Rückströmung bei abgeschaltetem Betrieb, kann es zu Verkeimung im Raum führen
- Minergie Bauten: warme Abluft geht über einen Wärmetauscher für kalte Zuluft

- Reinigung & Desinfektion in zwei Schritten
 - → Desinfektionswirkung Log 6
- Desinfektionsreinigung in einem Schritt
 - → Desinfektionswirkung Log 4
- Desinfektionswirkung hat starken Einfluss auf Wiederverkeimung
- Einweg oder Wiederverwendung von Reinigungstextilien
 - Regelmässige Anwendungen → Wiederverwendung
 - Einmalige Anwendungen → Einweg Produkte
 - Kritische Zonen, Isolationszimmer → Einweg Produkte

Aufbereitung von Reinigungstextilien

Konsequente Anwendung des Farbsystems: blau, rot, gelb, grün bei Aufbereitung, Verteilung und Rückführung:

- Trockene Textilien: Desinfektionsmittel wird bei Anwendung zugeführt,
 - + einfacher Waschvorgang einfache Lagerung und Transporte,
 - Dosierung, Flächenleistung kleiner
- Vorbefeuchtete Textilien: Bei Waschvorgang wird Desinfektionsmittel beigefügt, Textilien bleiben feucht in Feuchthaltebox,
 - + Dosierung, Zeitgewinn bei Reinigung, genaues einfaches Handling, Prozesskontrolle
 - braucht eine Inhouse Textilwäsche
- Vorbehandelte Textilien: nach Beimischung von Desinfektionsmittel im Waschprozess werden Textilien getrocknet, trockene
 Aufbewahrung. Für Anwendung Wasser beigeben
 - + längere Aufbewahrungszeit, einfacher Transport, gute Flächenleistung, Zeitgewinn
 - Dosierung, Prozesskontrolle

Aufbereitung von Reinigungstextilien

Waschmaschinen nach Textilfarben

Waschplan

Dosieranlage

Aufbereitung von Reinigungstextilien

Aufbewahrung von benetzten Reinigungstextilien

Sollverbrauch kontrollieren

Aufbereitung von Reinigungstextilien

Lagerkonzept auf dem Reinigungswagen

Rückschub der verbrauchter Textilien

Wasserstoffperoxid H₂O₂ Biodekontamination

- − H2O2 zerfällt in H2O & O2 Halbwertszeit in Luft bei Raumtemperatur ca. 12 Std
 → die freien Sauerstoffradikale wirken als sehr starkes Oxidationsmittel
- Verschiedene Techniken: Kaltverneblung, Begasung, Verdampfung
- Tröpfchen Aerosole von 0,5 40 μm Ø, Kondensation auf Oberfläche
- Sättigung in Luft bei 290 ppm H₂O₂
- Lückenloser Oberflächenfilm in allen Ritzen bei 350-380 ppm
- Zellstrukturen, Zelloberflächen, Proteine und DNS auf Oberflächen und in der Luft werden oxidiert und geschädigt
- 12% H₂O₂-Lösung → Wirkungsdauer 90 min 120 min
- Abbau des H₂O₂→ bis 75 ppm4-5 Std.1. Zyklus
 - bis 1 ppm 1-2 Std. 2. Zyklus MAK Wert
- Breites Wirkungsspektrum gegen Bakterien, Viren, Sporen

Zürcher Hygiene Symposium

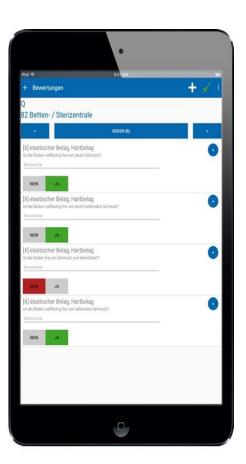
Wasserstoffperoxid H₂O₂ Biodekontamination

- Raum muss luftdicht abgeschlossen werden
- Schnelle H₂O₂ Verteilung durch Einsatz von Ventilatoren
- Kann erst wieder betreten werden, wenn H₂O₂ Konzentration 1 ppm
- Beschleunigung des Abbaus durch Katalysatoren
- Kontrolle des Desinfektionseffektes durch Bio- oder Farbindikatoren
- Bioindikatoren zeigen, ob sich Bakterien oder Sporen noch vermehren können
- Gute Materialverträglichkeit bei 12%-iger Lösung. → ab 20%-iger Lösung kritisch für Kupferverbindungen

UV-C Strahlung

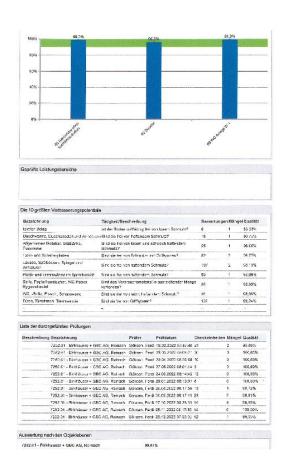
- Ultraviolett-Licht UV-C hat eine Wellenlänge zwischen 100-280 nm. Sichtbares Violett 400-450 nm.
- UV-C schädigt DNS von Zellen, stoppt Zellteilung
- Raumdesinfektion in geschlossenem Raum
- Raum kann nach der Bestrahlung umgehend betreten werden
- UV-Schatten vermindert Dekontamination
- Bewegter UV-Lampenroboter vermindert UV-Schatten
- Sehr geeignet für Materialschläusen

Mechanische Luftreinigungssysteme


- Umluftfiltersysteme mit Hepa 13 Luftfilter mit einer Filterleistung von 99.95% der Partikel von 0,1 μm und 99.97% der Partikel von 0,3 μm
- 18 Watt UV-C Lichtquelle bestrahlt den Filter und tötet Keime auf der Filterinnenseite. Keine Keimabtötung im Luftstrom
- Luftreinigung bis zu 560 m3/Std., entspricht einer Raumfläche von ca. 240 m2 bei Standardraumhöhe
- Systeme sind skalierbar, Preise zwischen 300.– bis 3'000.- für Tisch bis Standsysteme
- Bewegliche Hochleistungssysteme sind relativ laut: bis zu 60 dB bei voller
 Leistung → fix installierte Wandsysteme sind fast lautlos. Ab 5'000.- Fr.
- Kärcher Tisch- und Standsysteme, Rensair Standsystem auf Rollen

6. Reinigungskontrollen und Hygienemonitoring


Digitale Qualitätskontrolle


- Digitalisierte Prüfpläne und Checklisten auf Tabletts
- System e-QSS (Neumann&Neumann) oder ZOI (Kärcher)
- Qualitätsauswertungen und Statistiken
- Fotodokumentation
- Kundenbewertung & digitales Visum
- Verlinkung mit digitalisierten Plänen und CAFM (Computer Aided Facility Management)
 System Campos

6. Reinigungskontrollen und Hygienemonitoring

Optische Reinigungskontrolle mit digitaler Checkliste

17

6. Parameter im Hygienemonitoring – BioAnalytik**

Mikroorganismen+* - DNA/RNA - Proteine - Toxine - Zucker - Lipide - inorg. / org. Chemie

	**** (positiv)	***	**	* (negativ)
Time to result (Geschwindigkeit)				
Generelle Aussage				
Nachweisgrenze / Genauigkeit				
Spezifität				
Einfachheit (Ausführung & Report)				
Vor Ort bis im Labor - Ergebnisse				
Kosten pro Test / Resultat				
Kosten / Gerät (Investition)				
Norm-Zulassung				

^{*} Bakterien, Hefe/Pilze, Viren(+), (Algen(+), Eukaryoten, Protozoen (Parasiten), Pflanzenreste(+), etc.)

^{**} nicht abschliessend

Beispiele für einfache Hygiene Monitoring: Vor- und Nachteile

Priorisierung: Einfach, schnell, "vor Ort" und preiswert

Klassische Abklatschplatten Keim oder Hefen/Pilze

Klassische Abklatschplatten

Geschwindigkeit: 24-48-120 h

Quantitativ (Aussage): ja, auch Verdünnung

Genauigkeit (LOD/LOQ): 1 CFU

Spezifität: wenig/keine (AMK/Y&M)

Einfachheit: angelernt, <1 h

Proben & Auswertung: Vor Ort → Labor

Kosten pro Test: gering (ca. 5 CHF)

Gerät: gering (ca. 2000 CHF plus Labor)

Norm-Zulassung: ja, klassisch, alle

MERCK

Dip-Slides Keim oder Hefen/Pilze

Dip-Slides

Geschwindigkeit: 24-48-120 h

Quantitativ (Aussage): ja, aber nur Abklatsch

Genauigkeit (LOD/LOQ): 1 CFU, theoretisch

Spezifität: wenig/keine (AMK/Y&M)

Einfachheit: +/- sofort

Proben & Auswertung: Vor Ort → Labor light

Kosten pro Test: gering (ca. 5 CHF)

Gerät: **sehr** gering (ca. 400 CHF)

Norm-Zulassung: klassisch, Food

ATP-Lumineszenz Oberflächen-Swabs

ATP-Lumineszenz

Geschwindigkeit: <1 min

Qualitative (Aussage): nur qualitativ!

Genauigkeit (LOD/LOQ): relative Indikation

Spezifität: Keine (nur ATP)

Einfachheit: +/- sofort

Proben & Auswertung: Vor Ort

Kosten pro Test: **gering (<4 CHF)**

Gerät: gering (1000-2000 CHF)

Norm-Zulassung: ja, Food und Medical

Milliflex® Quantum

Fast Germs (GMP/Pharma) «Milliflex Quantum»

Fast Germ Platten

Geschwindigkeit: 8-48 h

Quantitativ (Aussage): ia

Genauigkeit (LOD/LOQ): 1 CFU

Spezifität: wenig/keine (Keime)

Einfachheit: h-tec+

Proben & Auswertung: Vor Ort → Labor

Kosten pro Test: erheblich (ca. 15 CHF)

Gerät: hoch (50'000 CHF plus Labor)

Norm-Zulassung: klassisch (GMP/Pharma)

6. Neuere Nachweistechnologien im Hygiene Monitoring

Vergleich von analytischen Parametern für den Bakteriennachweis in Wasserproben – coming soon!

LR = Linearer Bereich

LOD = Detektionslimite;

Assay time = Geschwindigkeit

FCM, Flow cytometry

DPV, differential pulse voltammetry

SWV, square wave voltammetry

SERS, surface-enhanced Raman spectroscopy

EIS, electrochemical impedance spectroscopy

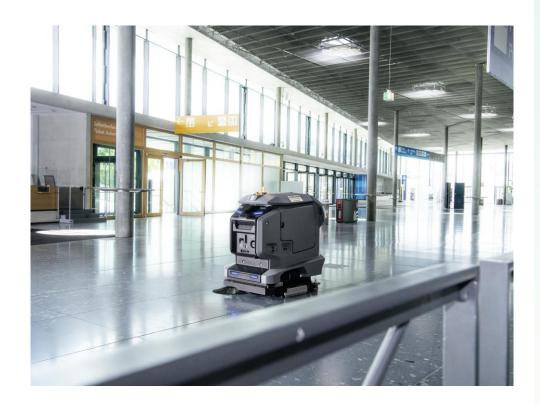
LFI, lateral flow immunoassay

LSV, linear sweep voltammetry

qPCR, real-time polymerase chain reaction (Standard)

Target Bacteria	Detection Method	Samples	LR	LOD	Assay Time
E. coli O157:H7	DPV	Water	1.3×10^{-18} – 10×10^{-12} M	$1.3 \times 10^{-18} \text{ M}$	2 h incubation
E. coli BCRC 11634	SWV	Culture, spiked lake water	$10^210^4~\text{CFU/mL}$	10^2CFU/mL	<100 min
P. aeruginosa	DPV	Tap water, human serum, saliva	1–100 µM	0.33 μΜ	
E. coli ATCC 25922	Fluorescence	Municipal wastewater		10^2 CFU/100 mL	<45 min
P. aeruginosa	Colorimetry, amperometry	Water	$606\times10^7~\text{CFU/mL}$	~60 CFU/mL	10 min
P. aeruginosa	SERS, colorimetry	Spiked tap water, chicken meat	$10^210^7~\text{CFU/mL}$	20 CFU/mL; 50 CFU/mL	
P. aeruginosa	Magnetic relaxation switch assay	Spiked drinking water, food samples	10^2 – 10^6 CFU/mL	50 CFU/mL	40 min, 4 h preparation
E. coli K12	EIS	Culture, mineral water	$10^410^7~\text{CFU/mL}$	10^4CFU/mL	
E. coli TD2158	Flow cytometry Flow cytometry,	Sea water			
E. coli ER2738	fluorescence	Drinking water		1 CFU/mL	<3 h
E. coli	EIS	Artificial river water	10–10 ⁵ CFU/mL	14 cells/mL	30 min incubation/<1 h
E. coli, P. aeruginosa, Vibrio cholerae	Colorimetry	Sea water, tap water, human serum		100 CFU	<1 h
E. coli	LFI	Broth, river water		10 ³ CFU/mL; 100 CFU/100 mL	7 h; 9 h
E. coli	DPV	Drinking water, apple juice, skim milk		10 ⁵ CFU/mL; 10 ² CFU/mL	3 h; 7 h
E. coli	LSV	Drinking water		10 ⁵ CFU/mL; 1 CFU/100 mL	4 h; 12 h
E. coli	qPCR	Agricultural water, municipal water	10^2 – 10^6 CFU/mL	10 ² CFU/mL	<2 h
E. coli	Luminescence, colorimetry	Water		<10 CFU/mL	5.5 h
E. coli BL21, E. coli ECOR13	Luminescence	Drinking water		<20 CFU/100 mL	5 h
E. coli	Luminescence	Lake water, drinking water		<10 CFU/mL	3 h
E. coli	Luminescence, colorimetry	Drinking water		1 CFU/mL	10 h
E. coli BL21	Colorimetry	Drinking water		1×10^4 CFU/mL; 1 CFU/mL (after pre-enrichment)	2.5 h; 6 h (pre-enrichment
E. coli	Luminescence	Mixed culture, tap water		<10 CFU/100 mL	7 h

Canciu et al., 2021, Sustainability 2021, 13, 7229


7. Neue technische Entwicklungen

Robotics

- Scheuersaugmaschinen mit «Teach and Repeat»-System
- Orientierung nach Lidar (*Light imaging*, *detection and ranging*)
- Sensoren erkennen Hindernisse und können sie umfahren
- Fahren selbständig an die Ladestation

Vorsicht:

- Transport- und Robotersysteme kommunizieren noch nicht miteinander
- Noch keine Verkehrsregeln
- Keine einheitliche Sensorik

7. Neue technische Entwicklungen

Sensorik & digitale Arbeitssteuerung

- Smart Building: Gebäude erkennt Benutzungsfrequenzen und steuert Reinigungsbedarf
- Algorithmen steuern die Reinigungsmitarbeiter*innen gemäss
 Leistungsverzeichnis, Benutzungsfrequenzen und Reinigungsbedarf
- Rückmeldung in Reservations- oder Zuteilungssystem
- Soober → bekannte Schweizer «Smart Cleaning» Software

Vorsicht:

- Algorithmen sind keine künstliche Intelligenz
- → Mitarbeiter*innen sind immer noch viel intelligenter
- → Algorithmen sind sehr zuverlässig.

Grün: bereits gereinigt, Rot: noch zu reinigen Blau: besetzt, wird auf nächsten Tag verschoben

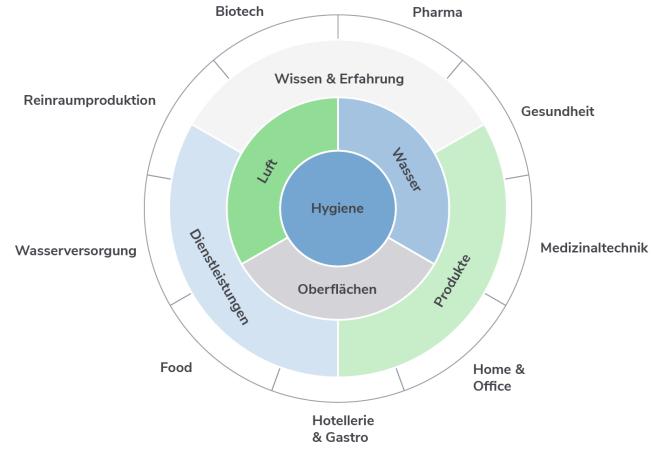
7. Neue technische Entwicklungen

CAFM (Computer Aided Facility Management) & BIM (Building Information Modeling)

- CAFM in der Reinigung ordnet Leistungsverzeichnisse, Reinigungspläne, Tickets und Qualitätsüberwachung den Gebäudeplänen zu
 - → CAMPOS, bekanntes CAFM System
- CAFM Systeme können auch für die Berechnungen von Offerten und Fakturen (intern& extern) gebraucht werden
- BIM 3D Modellierung → baut auf diversen Layer-Systemen auf
 - Layer für CAFM, Reinigung, Unterhalt etc.
 - Layer für Reinigung ersetzt Campos
 Kann für Ticketing gebraucht werden

8. In eigener Sache – Themenplattform Hygiene

Probleme verstehen, macht die Lösungsfindung einfacher


- Problem- und Lösungsvielfalt aufzeigen
- Wissen & Erfahrung bündeln
- Das richtige Produkt & Service zum richtigen Einsatz

8. In eigener Sache – Themenplattform Hygiene

Hygieneforum

25

9. Erkenntnisse aus unseren Erfahrungen und Branchenvergleiche

Basis für Fragen und Diskussion

- Pharma und Biotech haben GMP als weltweit einheitlichen Hygienestandart, die Nahrungsmittelproduktion kennt HACCP
- Hygienepriorität nicht allzu hoch im Vergleich mit anderen Branchen
- Schleusenkonzept Personen- und Materialschleusen
- Von anderen Branchen (Pharma, Biotech) lernen
- Agieren statt reagieren (Luft, Wasser und Oberflächen)
- Biomonitoring und Rückverfolgbarkeit

Besten Dank für Ihre Aufmerksamkeit!

enzlerh-tec.com enzler.com info@enzlerh-tec.com k.enzler@enzler.com d.chaperon@enzlerh-tec.com

Die Präsentation finden Sie auf der Enzlerh-tec Homepage unter Downloads («aktuelle Fachartikel»).